Electroshock treatment dependent microstructural evolution and mechanical properties of near-β titanium alloy manufactured by directed energy deposition
نویسندگان
چکیده
Effects of electroshock treatment (EST) on the microstructural evolution and mechanical properties near-β titanium alloy (Ti-55531) formed by directed energy deposition (DED) was studied in this work. With increase EST time, average hardness specimen decreased from 426 HV to 316 HV, fracture strain increased significantly, which attributed uniform dispersion α phase along grain boundaries inside β grains. After EST, texture intensity terms orientation distribution function (ODF), ascribed redistribution phase. Moreover, more atomic vacancies lattice distortion were near α/β interfaces, verified transmission electron microscopy (TEM) observation migration atoms interface under EST. External loadings facilitated dislocation motion distortions resulted reduction improvement ductility. The above results indicated that can quickly alter microstructure DED alloys as a simple energy-saving method.
منابع مشابه
Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy.
Hot-pressing is a powder metallurgy process where loose powder is loaded into a mould, usually of graphite, and sintered by the simultaneous application of high temperature and pressure. In this study elemental titanium and Ti-6Al-7Nb alloy powders are hot-pressed under different conditions in order to study the influence of the processing parameters on the microstructure and mechanical propert...
متن کاملAn Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties
The directed energy deposition (DED) process can be employed to build net shape components or prototypes starting from powder or wires, through a layer-by-layer process. This process provides an opportunity to fabricate complex shaped and functionally graded parts that can be utilized in different engineering applications. DED uses a laser as a focused heat source to melt the in-situ delivered ...
متن کاملEffect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy
The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...
متن کاملMechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کامل[Article] An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties
The directed energy deposition (DED) process can be employed to build net shape components or prototypes starting from powder or wires, through a layer-by-layer process. This process provides an opportunity to fabricate complex shaped and functionally graded parts that can be utilized in different engineering applications. DED uses a laser as a focused heat source to melt the in-situ delivered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials & Design
سال: 2021
ISSN: ['1873-4197', '0264-1275']
DOI: https://doi.org/10.1016/j.matdes.2021.110286